Improved QD-BRET conjugates for detection and imaging.
نویسندگان
چکیده
Self-illuminating quantum dots, also known as QD-BRET conjugates, are a new class of quantum dot bioconjugates which do not need external light for excitation. Instead, light emission relies on the bioluminescence resonance energy transfer from the attached Renilla luciferase enzyme, which emits light upon the oxidation of its substrate. QD-BRET combines the advantages of the QDs (such as superior brightness and photostability, tunable emission, multiplexing) as well as the high sensitivity of bioluminescence imaging, thus holding the promise for improved deep tissue in vivo imaging. Although studies have demonstrated the superior sensitivity and deep tissue imaging potential, the stability of the QD-BRET conjugates in biological environment needs to be improved for long-term imaging studies such as in vivo cell tracking. In this study, we seek to improve the stability of QD-BRET probes through polymeric encapsulation with a polyacrylamide gel. Results show that encapsulation caused some activity loss, but significantly improved both the in vitro serum stability and in vivo stability when subcutaneously injected into the animal. Stable QD-BRET probes should further facilitate their applications for both in vitro testing as well as in vivo cell tracking studies.
منابع مشابه
Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa
BACKGROUND Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. As the knowledge surrounding sperm behavior throughout the female genital tract still r...
متن کاملBioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.
BACKGROUND Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhi...
متن کاملEvaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen
The integration of semiconductor quantum dots (QDs) into homogeneous Förster resonance energy transfer (FRET) immunoassay kits for clinical diagnostics can provide significant advantages concerning multiplexing and sensitivity. Here we present a facile and functional QD-antibody conjugation method using three commercially available QDs with different photoluminescence (PL) maxima (605 nm, 655 n...
متن کاملMultiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation.
We report here a protease sensing nanoplatform based on semiconductor nanocrystals or quantum dots (QDs) and bioluminescence resonance energy transfer (QD-BRET) to detect the protease activity in complex biological samples. These nanosensors consist of bioluminescent proteins as the BRET donor, quantum dots as the BRET acceptor, and protease substrates sandwiched between the two as a sensing gr...
متن کاملConjugation of DNA to Streptavidin-coated Quantum Dots for the Real-time Imaging of Gene Transfer into Live Cells
We have developed the method for the conjugation of biotinylated DNA to streptavidin-coated quantum dots (QDs). QD-DNA conjugates and a highly sensitive fluorescence imaging technique are adopted to visualize gene transport across the membrane of the live cell in real time. Endocytotic cellular uptake of oligonucleotide is monitored by a real-time confocal imaging system. Longterm kinetic study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 372 3 شماره
صفحات -
تاریخ انتشار 2008